Critical point of tori collision in quasiperiodically forced systems
نویسندگان
چکیده
We report on a type of scaling behavior in quasiperiodically forced systems. On the parameter plane the critical point appears as a terminal point of the tori-collision bifurcation curve; its location is found numerically with high precision for two basic models, the forced supercritical circle map and the forced quadratic map. The hypothesis of universality, based on renormalization group arguments, is advanced to explain the observed scaling properties for the critical attractor and for the parameter plane arrangement in the neighborhood of the criticality.
منابع مشابه
The creation of strange non-chaotic attractors in non-smooth saddle-node bifurcations
We propose a general mechanism by which strange non-chaotic attractors (SNA) can be created during the collision of invariant tori in quasiperiodically forced systems, and then describe rigorously how this mechanism is implemented in certain parameter families of quasiperiodically forced interval maps. In these families a stable and an unstable invariant circle undergo a saddle-node bifurcation...
متن کاملStrange non-chaotic attractors in quasiperiodically forced circle maps
The occurrence of strange non-chaotic attractors (SNA) in quasiperiodically forced systems has attracted considerable interest over the last two decades, in particular since it provides a rich class of examples for the possibility of complicated dynamics in the absence of chaos. Their existence was discovered in the early 1980’s, independently by Herman [1] for quasiperiodic SL(2, R)-cocycles a...
متن کاملRenormalization group for scaling at the torus-doubling terminal point
The quasiperiodically forced logistic map is analyzed at the terminal point of the torus-doubling bifurcation curve, where the dynamical regimes of torus, doubled torus, strange nonchaotic attractor, and chaos meet. Using the renormalization group approach we reveal scaling properties both for the critical attractor and for the parameter plane topography near the critical point. @S1063-651X~98!...
متن کاملBasin bifurcation in quasiperiodically forced systems
In this paper we study quasiperiodically forced systems exhibiting fractal and Wada basin boundaries. Specifically, by utilizing a class of representative systems, we analyze the dynamical origin of such basin boundaries and we characterize them. Furthermore, we find that basin boundaries in a quasiperiodically driven system can undergo a unique type of bifurcation in which isolated ‘‘islands’’...
متن کاملRecurrence analysis of strange nonchaotic dynamics in driven excitable systems.
Numerous studies have shown that strange nonchaotic attractors (SNAs) can be observed generally in quasiperiodically forced systems. These systems could be one- or high-dimensional maps, continuous-time systems, or experimental models. Recently introduced measures of complexity based on recurrence plots can detect the transitions from quasiperiodic to chaotic motion via SNAs in the previously c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
دوره 62 2 Pt A شماره
صفحات -
تاریخ انتشار 2000